Tensorflow/Keras#

Note

This example requires the tensorflow package to be installed.

Theoretically, tpcp is framework agnostic and can be used with any framework. However, due to the way some frameworks handle their objects, some special handling internally is required. Hence, this example does not only serve as example on how to use tensorflow with tpcp, but also as a test case for these special cases.

When using tpcp with any machine learning framework, you either want to use a pretrained model with a normal pipeline or a train your own model as part of an Optimizable Pipeline. Here we show the second case, as it is more complex, and you are likely able to figure out the first case yourself.

This means, we are planning to perform the following steps:

  1. Create a pipeline that creates and trains a model.

  2. Allow the modification of model hyperparameters.

  3. Run a simple cross-validation to demonstrate the functionality.

This example reimplements the basic MNIST example from the [tensorflow documentation](https://www.tensorflow.org/tutorials/keras/classification).

Some Notes#

In this example we show how to implement a Pipeline that uses tensorflow. You could implement an Algorithm in a similar way. This would actually be easier, as no specific handling of the input data would be required. For a pipeline, we need to create a custom Dataset class, as this is the expected input for a pipeline.

The Dataset#

We are using the normal fashion MNIST dataset for this example It consists of 60.000 images of 28x28 pixels, each with a label. We will ignore the typical train-test split, as we want to do our own cross-validation.

In addition, we will simulate an additional “index level”. In this (and most typical deep learning datasets), each datapoint is one vector for which we can make one prediction. In tpcp, we usually deal with datasets, where you might have multiple pieces of information for each datapoint. For example, one datapoint could be a patient, for which we have an entire time series of measurements. We will simulate this here, by creating the index of our dataset as 1000 groups each containing 60 images.

Other than that, the dataset is pretty standard. Besides the create_index method, we only need to implement the input_as_array and labels_as_array methods that allow us to easily access the data once we selected a single group.

from functools import lru_cache

import numpy as np
import pandas as pd
import tensorflow as tf

from tpcp import Dataset

tf.keras.utils.set_random_seed(812)
tf.config.experimental.enable_op_determinism()


@lru_cache(maxsize=1)
def get_fashion_mnist_data():
    # Note: We throw train and test sets together, as we don't care about the official split here.
    #       We will create our own split later.
    (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.fashion_mnist.load_data()
    return np.array(list(train_images) + list(test_images)), list(train_labels) + list(test_labels)


class FashionMNIST(Dataset):
    def input_as_array(self) -> np.ndarray:
        self.assert_is_single(None, "input_as_array")
        group_id = int(self.group_label.group_id)
        images, _ = get_fashion_mnist_data()
        return images[group_id * 60 : (group_id + 1) * 60].reshape((60, 28, 28)) / 255

    def labels_as_array(self) -> np.ndarray:
        self.assert_is_single(None, "labels_as_array")
        group_id = int(self.group_label.group_id)
        _, labels = get_fashion_mnist_data()
        return np.array(labels[group_id * 60 : (group_id + 1) * 60])

    def create_index(self) -> pd.DataFrame:
        # There are 60.000 images in total.
        # We simulate 1000 groups of 60 images each.
        return pd.DataFrame({"group_id": list(range(1000))})

We can see our Dataset works as expected:

dataset = FashionMNIST()
dataset[0].input_as_array().shape
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz

 8192/29515 [=======>......................] - ETA: 0s
29515/29515 [==============================] - 0s 1us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz

    8192/26421880 [..............................] - ETA: 0s
  131072/26421880 [..............................] - ETA: 10s
 1040384/26421880 [>.............................] - ETA: 2s 
 5292032/26421880 [=====>........................] - ETA: 0s
 8986624/26421880 [=========>....................] - ETA: 0s
13639680/26421880 [==============>...............] - ETA: 0s
16785408/26421880 [==================>...........] - ETA: 0s
21331968/26421880 [=======================>......] - ETA: 0s
26058752/26421880 [============================>.] - ETA: 0s
26421880/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz

5148/5148 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz

   8192/4422102 [..............................] - ETA: 0s
 139264/4422102 [..............................] - ETA: 1s
1114112/4422102 [======>.......................] - ETA: 0s
4422102/4422102 [==============================] - 0s 0us/step

(60, 28, 28)
dataset[0].labels_as_array().shape
(60,)

The Pipeline#

We will create a pipeline that uses a simple neural network to classify the images. In tpcp, all “things” that should be optimized need to be parameters. This means our model itself needs to be a parameter of the pipeline. However, as we don’t have the model yet, as its creation depends on other hyperparameters, we add it as an optional parameter initialized with None. Further, we prefix the parameter name with an underscore, to signify, that this is not a parameter that should be modified manually by the user. This is just convention, and it is up to you to decide how you want to name your parameters.

We further introduce a hyperparameter n_dense_layer_nodes to show how we can influence the model creation.

The optimize method#

To make our pipeline optimizable, it needs to inherit from OptimizablePipeline. Further we need to mark at least one of the parameters as OptiPara using the type annotation. We do this for our _model parameter.

Finally, we need to implement the self_optimize method. This method will get the entire training dataset as input and should update the _model parameter with the trained model. Hence, we first extract the relevant data (remember, each datapoint is 60 images), by concatinating all images over all groups in the dataset. Then we create the Keras model based on the hyperparameters. Finally, we train the model and update the _model parameter.

Here we chose to wrap the method with make_optimize_safe. This decorator will perform some runtime checks to ensure that the method is implemented correctly.

The run method#

The run method expects that the _model parameter is already set (i.e. the pipeline was already optimized). It gets a single datapoint as input (remember, a datapoint is a single group of 60 images). We then extract the data from the datapoint and let the model make a prediction. We store the prediction on our output attribute predictions_. The trailing underscore is a convention to signify, that this is an “result” attribute.

from tpcp import OptimizablePipeline, OptiPara, make_optimize_safe, make_action_safe
from typing import Optional, Tuple
from typing_extensions import Self
import warnings


class KerasPipeline(OptimizablePipeline):
    n_dense_layer_nodes: int
    n_train_epochs: int
    _model: OptiPara[Optional[tf.keras.Sequential]]

    predictions_: np.ndarray

    def __init__(self, n_dense_layer_nodes=128, n_train_epochs=5, _model: Optional[tf.keras.Sequential] = None):
        self.n_dense_layer_nodes = n_dense_layer_nodes
        self.n_train_epochs = n_train_epochs
        self._model = _model

    @property
    def predicted_labels_(self):
        return np.argmax(self.predictions_, axis=1)

    @make_optimize_safe
    def self_optimize(self, dataset, **_) -> Self:
        data = np.vstack([d.input_as_array() for d in dataset])
        labels = np.hstack([d.labels_as_array() for d in dataset])

        print(data.shape)
        if self._model is not None:
            warnings.warn("Overwriting existing model!")

        self._model = tf.keras.Sequential(
            [
                tf.keras.layers.Flatten(input_shape=(28, 28)),
                tf.keras.layers.Dense(self.n_dense_layer_nodes, activation="relu"),
                tf.keras.layers.Dense(10),
            ]
        )

        self._model.compile(
            optimizer="adam",
            loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
            metrics=["accuracy"],
        )

        self._model.fit(data, labels, epochs=self.n_train_epochs)

        return self

    @make_action_safe
    def run(self, datapoint) -> Self:
        if self._model is None:
            raise RuntimeError("Model not trained yet!")
        data = datapoint.input_as_array()

        self.predictions_ = self._model.predict(data)
        return self

Testing the pipeline#

We can now test our pipeline. We will run the optimization using a couple of datapoints (to keep everything fast) and then use run to get the predictions for a single unseen datapoint.

pipeline = KerasPipeline().self_optimize(FashionMNIST()[:10])
p1 = pipeline.run(FashionMNIST()[11])
print(p1.predicted_labels_)
print(FashionMNIST()[11].labels_as_array())
(600, 28, 28)
Epoch 1/5

 1/19 [>.............................] - ETA: 12s - loss: 2.3593 - accuracy: 0.1250
19/19 [==============================] - 1s 2ms/step - loss: 1.5112 - accuracy: 0.4933
Epoch 2/5

 1/19 [>.............................] - ETA: 0s - loss: 0.9220 - accuracy: 0.7188
19/19 [==============================] - 0s 2ms/step - loss: 0.8705 - accuracy: 0.7083
Epoch 3/5

 1/19 [>.............................] - ETA: 0s - loss: 1.0179 - accuracy: 0.6875
19/19 [==============================] - 0s 2ms/step - loss: 0.6799 - accuracy: 0.7850
Epoch 4/5

 1/19 [>.............................] - ETA: 0s - loss: 0.4521 - accuracy: 0.8750
19/19 [==============================] - 0s 2ms/step - loss: 0.5962 - accuracy: 0.8133
Epoch 5/5

 1/19 [>.............................] - ETA: 0s - loss: 0.4230 - accuracy: 0.8438
19/19 [==============================] - 0s 2ms/step - loss: 0.5158 - accuracy: 0.8400

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step
[8 8 0 9 6 0 7 3 7 9 3 8 6 3 7 8 1 4 0 7 9 8 5 5 2 1 3 3 1 9 7 5 9 9 7 8 2
 7 2 7 2 6 7 1 1 7 5 4 8 3 5 9 0 7 3 0 0 9 1 9]
[8 8 0 9 2 0 7 3 7 9 3 8 4 3 7 8 1 4 0 7 9 8 5 5 2 1 3 4 6 7 7 5 9 9 7 8 2
 7 4 7 0 3 5 1 1 5 5 2 8 3 5 9 0 7 3 0 0 7 1 9]

We can see that even with just 5 epochs, the model already performs quite well. To quantify we can calculate the accuracy for this datapoint:

from sklearn.metrics import accuracy_score

accuracy_score(p1.predicted_labels_, FashionMNIST()[11].labels_as_array())
0.8

Cross Validation#

If we want to run a cross validation, we need to formalize the scoring into a function. We will calculate two types of accuracy: First, the accuracy per group and second, the accuracy over all images across all groups. For more information about how this works, check the custom_scorer example.

from typing import Sequence, Dict
from tpcp.validate import Aggregator


class SingleValueAccuracy(Aggregator[np.ndarray]):
    RETURN_RAW_SCORES = False

    @classmethod
    def aggregate(cls, /, values: Sequence[Tuple[np.ndarray, np.ndarray]], **_) -> Dict[str, float]:
        return {"accuracy": accuracy_score(np.hstack([v[0] for v in values]), np.hstack([v[1] for v in values]))}


def scoring(pipeline, datapoint):
    result: np.ndarray = pipeline.safe_run(datapoint).predicted_labels_
    reference = datapoint.labels_as_array()

    return {
        "accuracy": accuracy_score(result, reference),
        "per_sample": SingleValueAccuracy((result, reference)),
    }

Now we can run a cross validation. We will only run it on a subset of the data, to keep the runtime manageable.

Note

You might see warnings about retracing of the model. This is because we clone the pipeline before each call to the run method. This is a good idea to ensure that all pipelines are independent of each other, however, might result in some performance overhead.

from tpcp.validate import cross_validate
from tpcp.optimize import Optimize

pipeline = KerasPipeline(n_train_epochs=10)
cv_results = cross_validate(Optimize(pipeline), FashionMNIST()[:100], scoring=scoring, cv=3)
CV Folds:   0%|          | 0/3 [00:00<?, ?it/s](3960, 28, 28)
Epoch 1/10

  1/124 [..............................] - ETA: 1:12 - loss: 2.5074 - accuracy: 0.0938
 25/124 [=====>........................] - ETA: 0s - loss: 1.4785 - accuracy: 0.4600  
 50/124 [===========>..................] - ETA: 0s - loss: 1.1601 - accuracy: 0.5863
 75/124 [=================>............] - ETA: 0s - loss: 1.0235 - accuracy: 0.6354
100/124 [=======================>......] - ETA: 0s - loss: 0.9496 - accuracy: 0.6678
124/124 [==============================] - 1s 2ms/step - loss: 0.8968 - accuracy: 0.6919
Epoch 2/10

  1/124 [..............................] - ETA: 0s - loss: 1.0481 - accuracy: 0.7500
 26/124 [=====>........................] - ETA: 0s - loss: 0.5908 - accuracy: 0.8089
 51/124 [===========>..................] - ETA: 0s - loss: 0.5920 - accuracy: 0.7996
 76/124 [=================>............] - ETA: 0s - loss: 0.5642 - accuracy: 0.8076
101/124 [=======================>......] - ETA: 0s - loss: 0.5612 - accuracy: 0.8103
124/124 [==============================] - 0s 2ms/step - loss: 0.5606 - accuracy: 0.8104
Epoch 3/10

  1/124 [..............................] - ETA: 0s - loss: 0.7180 - accuracy: 0.6250
 26/124 [=====>........................] - ETA: 0s - loss: 0.5136 - accuracy: 0.8161
 51/124 [===========>..................] - ETA: 0s - loss: 0.5116 - accuracy: 0.8241
 76/124 [=================>............] - ETA: 0s - loss: 0.4994 - accuracy: 0.8240
101/124 [=======================>......] - ETA: 0s - loss: 0.4985 - accuracy: 0.8261
124/124 [==============================] - 0s 2ms/step - loss: 0.5009 - accuracy: 0.8232
Epoch 4/10

  1/124 [..............................] - ETA: 0s - loss: 0.4630 - accuracy: 0.8125
 26/124 [=====>........................] - ETA: 0s - loss: 0.4043 - accuracy: 0.8618
 51/124 [===========>..................] - ETA: 0s - loss: 0.4236 - accuracy: 0.8529
 76/124 [=================>............] - ETA: 0s - loss: 0.4401 - accuracy: 0.8470
101/124 [=======================>......] - ETA: 0s - loss: 0.4450 - accuracy: 0.8450
124/124 [==============================] - 0s 2ms/step - loss: 0.4448 - accuracy: 0.8437
Epoch 5/10

  1/124 [..............................] - ETA: 0s - loss: 0.6924 - accuracy: 0.6250
 26/124 [=====>........................] - ETA: 0s - loss: 0.4356 - accuracy: 0.8281
 51/124 [===========>..................] - ETA: 0s - loss: 0.4340 - accuracy: 0.8407
 76/124 [=================>............] - ETA: 0s - loss: 0.4171 - accuracy: 0.8503
101/124 [=======================>......] - ETA: 0s - loss: 0.4101 - accuracy: 0.8555
124/124 [==============================] - 0s 2ms/step - loss: 0.4119 - accuracy: 0.8540
Epoch 6/10

  1/124 [..............................] - ETA: 0s - loss: 0.5976 - accuracy: 0.7812
 26/124 [=====>........................] - ETA: 0s - loss: 0.4092 - accuracy: 0.8558
 51/124 [===========>..................] - ETA: 0s - loss: 0.3851 - accuracy: 0.8664
 76/124 [=================>............] - ETA: 0s - loss: 0.3845 - accuracy: 0.8660
101/124 [=======================>......] - ETA: 0s - loss: 0.3790 - accuracy: 0.8691
124/124 [==============================] - 0s 2ms/step - loss: 0.3792 - accuracy: 0.8687
Epoch 7/10

  1/124 [..............................] - ETA: 0s - loss: 0.4009 - accuracy: 0.8438
 26/124 [=====>........................] - ETA: 0s - loss: 0.3543 - accuracy: 0.8714
 51/124 [===========>..................] - ETA: 0s - loss: 0.3607 - accuracy: 0.8713
 76/124 [=================>............] - ETA: 0s - loss: 0.3589 - accuracy: 0.8758
101/124 [=======================>......] - ETA: 0s - loss: 0.3569 - accuracy: 0.8790
124/124 [==============================] - 0s 2ms/step - loss: 0.3555 - accuracy: 0.8768
Epoch 8/10

  1/124 [..............................] - ETA: 0s - loss: 0.2810 - accuracy: 0.9062
 26/124 [=====>........................] - ETA: 0s - loss: 0.2951 - accuracy: 0.9147
 51/124 [===========>..................] - ETA: 0s - loss: 0.3004 - accuracy: 0.9038
 76/124 [=================>............] - ETA: 0s - loss: 0.3195 - accuracy: 0.8935
101/124 [=======================>......] - ETA: 0s - loss: 0.3299 - accuracy: 0.8899
124/124 [==============================] - 0s 2ms/step - loss: 0.3464 - accuracy: 0.8826
Epoch 9/10

  1/124 [..............................] - ETA: 0s - loss: 0.2351 - accuracy: 0.9375
 27/124 [=====>........................] - ETA: 0s - loss: 0.3445 - accuracy: 0.8843
 52/124 [===========>..................] - ETA: 0s - loss: 0.3397 - accuracy: 0.8792
 77/124 [=================>............] - ETA: 0s - loss: 0.3213 - accuracy: 0.8884
102/124 [=======================>......] - ETA: 0s - loss: 0.3224 - accuracy: 0.8903
124/124 [==============================] - 0s 2ms/step - loss: 0.3196 - accuracy: 0.8886
Epoch 10/10

  1/124 [..............................] - ETA: 0s - loss: 0.2527 - accuracy: 0.9688
 26/124 [=====>........................] - ETA: 0s - loss: 0.2442 - accuracy: 0.9111
 51/124 [===========>..................] - ETA: 0s - loss: 0.2760 - accuracy: 0.9044
 76/124 [=================>............] - ETA: 0s - loss: 0.2979 - accuracy: 0.8960
101/124 [=======================>......] - ETA: 0s - loss: 0.2960 - accuracy: 0.8982
124/124 [==============================] - 0s 2ms/step - loss: 0.2921 - accuracy: 0.8997

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

CV Folds:  33%|###3      | 1/3 [00:11<00:22, 11.48s/it](4020, 28, 28)
Epoch 1/10

  1/126 [..............................] - ETA: 1:12 - loss: 2.3656 - accuracy: 0.1250
 26/126 [=====>........................] - ETA: 0s - loss: 1.4324 - accuracy: 0.5240  
 51/126 [===========>..................] - ETA: 0s - loss: 1.1858 - accuracy: 0.6048
 76/126 [=================>............] - ETA: 0s - loss: 1.0536 - accuracy: 0.6460
100/126 [======================>.......] - ETA: 0s - loss: 0.9618 - accuracy: 0.6753
125/126 [============================>.] - ETA: 0s - loss: 0.8932 - accuracy: 0.6990
126/126 [==============================] - 1s 2ms/step - loss: 0.8913 - accuracy: 0.7000
Epoch 2/10

  1/126 [..............................] - ETA: 0s - loss: 0.4984 - accuracy: 0.8125
 26/126 [=====>........................] - ETA: 0s - loss: 0.5686 - accuracy: 0.8053
 51/126 [===========>..................] - ETA: 0s - loss: 0.5829 - accuracy: 0.7923
 76/126 [=================>............] - ETA: 0s - loss: 0.5839 - accuracy: 0.7940
101/126 [=======================>......] - ETA: 0s - loss: 0.5740 - accuracy: 0.7942
126/126 [==============================] - ETA: 0s - loss: 0.5662 - accuracy: 0.8002
126/126 [==============================] - 0s 2ms/step - loss: 0.5662 - accuracy: 0.8002
Epoch 3/10

  1/126 [..............................] - ETA: 0s - loss: 0.5249 - accuracy: 0.8125
 26/126 [=====>........................] - ETA: 0s - loss: 0.5084 - accuracy: 0.8317
 51/126 [===========>..................] - ETA: 0s - loss: 0.4669 - accuracy: 0.8364
 76/126 [=================>............] - ETA: 0s - loss: 0.4701 - accuracy: 0.8363
101/126 [=======================>......] - ETA: 0s - loss: 0.4785 - accuracy: 0.8348
126/126 [==============================] - ETA: 0s - loss: 0.4893 - accuracy: 0.8279
126/126 [==============================] - 0s 2ms/step - loss: 0.4893 - accuracy: 0.8279
Epoch 4/10

  1/126 [..............................] - ETA: 0s - loss: 0.2082 - accuracy: 0.9688
 26/126 [=====>........................] - ETA: 0s - loss: 0.4251 - accuracy: 0.8594
 51/126 [===========>..................] - ETA: 0s - loss: 0.4422 - accuracy: 0.8456
 76/126 [=================>............] - ETA: 0s - loss: 0.4264 - accuracy: 0.8536
101/126 [=======================>......] - ETA: 0s - loss: 0.4435 - accuracy: 0.8478
126/126 [==============================] - ETA: 0s - loss: 0.4431 - accuracy: 0.8453
126/126 [==============================] - 0s 2ms/step - loss: 0.4431 - accuracy: 0.8453
Epoch 5/10

  1/126 [..............................] - ETA: 0s - loss: 0.1979 - accuracy: 0.9375
 26/126 [=====>........................] - ETA: 0s - loss: 0.4029 - accuracy: 0.8558
 51/126 [===========>..................] - ETA: 0s - loss: 0.4061 - accuracy: 0.8548
 76/126 [=================>............] - ETA: 0s - loss: 0.4097 - accuracy: 0.8553
101/126 [=======================>......] - ETA: 0s - loss: 0.4030 - accuracy: 0.8567
125/126 [============================>.] - ETA: 0s - loss: 0.4040 - accuracy: 0.8583
126/126 [==============================] - 0s 2ms/step - loss: 0.4046 - accuracy: 0.8580
Epoch 6/10

  1/126 [..............................] - ETA: 0s - loss: 0.4598 - accuracy: 0.8125
 25/126 [====>.........................] - ETA: 0s - loss: 0.3639 - accuracy: 0.8625
 50/126 [==========>...................] - ETA: 0s - loss: 0.3693 - accuracy: 0.8637
 75/126 [================>.............] - ETA: 0s - loss: 0.3757 - accuracy: 0.8642
100/126 [======================>.......] - ETA: 0s - loss: 0.3760 - accuracy: 0.8659
125/126 [============================>.] - ETA: 0s - loss: 0.3771 - accuracy: 0.8670
126/126 [==============================] - 0s 2ms/step - loss: 0.3772 - accuracy: 0.8667
Epoch 7/10

  1/126 [..............................] - ETA: 0s - loss: 0.2244 - accuracy: 0.9062
 25/126 [====>.........................] - ETA: 0s - loss: 0.3532 - accuracy: 0.8813
 50/126 [==========>...................] - ETA: 0s - loss: 0.3309 - accuracy: 0.8875
 75/126 [================>.............] - ETA: 0s - loss: 0.3474 - accuracy: 0.8813
100/126 [======================>.......] - ETA: 0s - loss: 0.3482 - accuracy: 0.8794
125/126 [============================>.] - ETA: 0s - loss: 0.3489 - accuracy: 0.8780
126/126 [==============================] - 0s 2ms/step - loss: 0.3479 - accuracy: 0.8786
Epoch 8/10

  1/126 [..............................] - ETA: 0s - loss: 0.2092 - accuracy: 0.9375
 25/126 [====>.........................] - ETA: 0s - loss: 0.2997 - accuracy: 0.9000
 50/126 [==========>...................] - ETA: 0s - loss: 0.3115 - accuracy: 0.8931
 75/126 [================>.............] - ETA: 0s - loss: 0.3209 - accuracy: 0.8888
100/126 [======================>.......] - ETA: 0s - loss: 0.3294 - accuracy: 0.8869
125/126 [============================>.] - ETA: 0s - loss: 0.3292 - accuracy: 0.8860
126/126 [==============================] - 0s 2ms/step - loss: 0.3285 - accuracy: 0.8863
Epoch 9/10

  1/126 [..............................] - ETA: 0s - loss: 0.1886 - accuracy: 0.9062
 26/126 [=====>........................] - ETA: 0s - loss: 0.2963 - accuracy: 0.9014
 50/126 [==========>...................] - ETA: 0s - loss: 0.3077 - accuracy: 0.8881
 75/126 [================>.............] - ETA: 0s - loss: 0.3219 - accuracy: 0.8771
100/126 [======================>.......] - ETA: 0s - loss: 0.3062 - accuracy: 0.8866
125/126 [============================>.] - ETA: 0s - loss: 0.3130 - accuracy: 0.8898
126/126 [==============================] - 0s 2ms/step - loss: 0.3120 - accuracy: 0.8900
Epoch 10/10

  1/126 [..............................] - ETA: 0s - loss: 0.2327 - accuracy: 0.9062
 26/126 [=====>........................] - ETA: 0s - loss: 0.2941 - accuracy: 0.8822
 51/126 [===========>..................] - ETA: 0s - loss: 0.2947 - accuracy: 0.8922
 76/126 [=================>............] - ETA: 0s - loss: 0.3047 - accuracy: 0.8882
101/126 [=======================>......] - ETA: 0s - loss: 0.3064 - accuracy: 0.8877
126/126 [==============================] - ETA: 0s - loss: 0.3065 - accuracy: 0.8871
126/126 [==============================] - 0s 2ms/step - loss: 0.3065 - accuracy: 0.8871

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

CV Folds:  67%|######6   | 2/3 [00:22<00:11, 11.40s/it](4020, 28, 28)
Epoch 1/10

  1/126 [..............................] - ETA: 1:13 - loss: 2.3129 - accuracy: 0.0938
 25/126 [====>.........................] - ETA: 0s - loss: 1.4511 - accuracy: 0.5113  
 50/126 [==========>...................] - ETA: 0s - loss: 1.1892 - accuracy: 0.5994
 75/126 [================>.............] - ETA: 0s - loss: 1.0642 - accuracy: 0.6392
100/126 [======================>.......] - ETA: 0s - loss: 0.9617 - accuracy: 0.6753
125/126 [============================>.] - ETA: 0s - loss: 0.9002 - accuracy: 0.6967
126/126 [==============================] - 1s 2ms/step - loss: 0.8965 - accuracy: 0.6983
Epoch 2/10

  1/126 [..............................] - ETA: 0s - loss: 0.4769 - accuracy: 0.8125
 26/126 [=====>........................] - ETA: 0s - loss: 0.6113 - accuracy: 0.7957
 51/126 [===========>..................] - ETA: 0s - loss: 0.5969 - accuracy: 0.7953
 76/126 [=================>............] - ETA: 0s - loss: 0.5938 - accuracy: 0.7956
101/126 [=======================>......] - ETA: 0s - loss: 0.5780 - accuracy: 0.8026
126/126 [==============================] - ETA: 0s - loss: 0.5750 - accuracy: 0.8040
126/126 [==============================] - 0s 2ms/step - loss: 0.5750 - accuracy: 0.8040
Epoch 3/10

  1/126 [..............................] - ETA: 0s - loss: 0.6893 - accuracy: 0.7812
 25/126 [====>.........................] - ETA: 0s - loss: 0.5681 - accuracy: 0.8075
 50/126 [==========>...................] - ETA: 0s - loss: 0.5351 - accuracy: 0.8125
 75/126 [================>.............] - ETA: 0s - loss: 0.5261 - accuracy: 0.8179
100/126 [======================>.......] - ETA: 0s - loss: 0.5193 - accuracy: 0.8222
125/126 [============================>.] - ETA: 0s - loss: 0.5144 - accuracy: 0.8227
126/126 [==============================] - 0s 2ms/step - loss: 0.5140 - accuracy: 0.8224
Epoch 4/10

  1/126 [..............................] - ETA: 0s - loss: 0.4519 - accuracy: 0.9062
 26/126 [=====>........................] - ETA: 0s - loss: 0.4196 - accuracy: 0.8582
 51/126 [===========>..................] - ETA: 0s - loss: 0.4550 - accuracy: 0.8395
 76/126 [=================>............] - ETA: 0s - loss: 0.4425 - accuracy: 0.8446
101/126 [=======================>......] - ETA: 0s - loss: 0.4570 - accuracy: 0.8416
126/126 [==============================] - ETA: 0s - loss: 0.4667 - accuracy: 0.8358
126/126 [==============================] - 0s 2ms/step - loss: 0.4667 - accuracy: 0.8358
Epoch 5/10

  1/126 [..............................] - ETA: 0s - loss: 0.4192 - accuracy: 0.8125
 25/126 [====>.........................] - ETA: 0s - loss: 0.4182 - accuracy: 0.8625
 50/126 [==========>...................] - ETA: 0s - loss: 0.4171 - accuracy: 0.8656
 75/126 [================>.............] - ETA: 0s - loss: 0.4220 - accuracy: 0.8608
100/126 [======================>.......] - ETA: 0s - loss: 0.4263 - accuracy: 0.8584
125/126 [============================>.] - ETA: 0s - loss: 0.4181 - accuracy: 0.8597
126/126 [==============================] - 0s 2ms/step - loss: 0.4173 - accuracy: 0.8600
Epoch 6/10

  1/126 [..............................] - ETA: 0s - loss: 0.8799 - accuracy: 0.7500
 26/126 [=====>........................] - ETA: 0s - loss: 0.3717 - accuracy: 0.8654
 51/126 [===========>..................] - ETA: 0s - loss: 0.3801 - accuracy: 0.8701
 76/126 [=================>............] - ETA: 0s - loss: 0.3856 - accuracy: 0.8688
101/126 [=======================>......] - ETA: 0s - loss: 0.3907 - accuracy: 0.8632
126/126 [==============================] - ETA: 0s - loss: 0.3949 - accuracy: 0.8624
126/126 [==============================] - 0s 2ms/step - loss: 0.3949 - accuracy: 0.8624
Epoch 7/10

  1/126 [..............................] - ETA: 0s - loss: 0.2022 - accuracy: 0.9375
 26/126 [=====>........................] - ETA: 0s - loss: 0.3734 - accuracy: 0.8786
 51/126 [===========>..................] - ETA: 0s - loss: 0.3456 - accuracy: 0.8817
 76/126 [=================>............] - ETA: 0s - loss: 0.3615 - accuracy: 0.8762
101/126 [=======================>......] - ETA: 0s - loss: 0.3618 - accuracy: 0.8769
126/126 [==============================] - ETA: 0s - loss: 0.3635 - accuracy: 0.8774
126/126 [==============================] - 0s 2ms/step - loss: 0.3635 - accuracy: 0.8774
Epoch 8/10

  1/126 [..............................] - ETA: 0s - loss: 0.3186 - accuracy: 0.8750
 26/126 [=====>........................] - ETA: 0s - loss: 0.3445 - accuracy: 0.8810
 50/126 [==========>...................] - ETA: 0s - loss: 0.3372 - accuracy: 0.8844
 74/126 [================>.............] - ETA: 0s - loss: 0.3362 - accuracy: 0.8847
 98/126 [======================>.......] - ETA: 0s - loss: 0.3342 - accuracy: 0.8865
123/126 [============================>.] - ETA: 0s - loss: 0.3448 - accuracy: 0.8824
126/126 [==============================] - 0s 2ms/step - loss: 0.3457 - accuracy: 0.8826
Epoch 9/10

  1/126 [..............................] - ETA: 0s - loss: 0.2176 - accuracy: 0.9375
 26/126 [=====>........................] - ETA: 0s - loss: 0.3434 - accuracy: 0.8834
 50/126 [==========>...................] - ETA: 0s - loss: 0.3422 - accuracy: 0.8750
 75/126 [================>.............] - ETA: 0s - loss: 0.3323 - accuracy: 0.8804
100/126 [======================>.......] - ETA: 0s - loss: 0.3298 - accuracy: 0.8853
125/126 [============================>.] - ETA: 0s - loss: 0.3278 - accuracy: 0.8880
126/126 [==============================] - 0s 2ms/step - loss: 0.3285 - accuracy: 0.8878
Epoch 10/10

  1/126 [..............................] - ETA: 0s - loss: 0.3079 - accuracy: 0.8125
 26/126 [=====>........................] - ETA: 0s - loss: 0.2803 - accuracy: 0.9075
 51/126 [===========>..................] - ETA: 0s - loss: 0.2911 - accuracy: 0.9044
 76/126 [=================>............] - ETA: 0s - loss: 0.2854 - accuracy: 0.9062
100/126 [======================>.......] - ETA: 0s - loss: 0.2977 - accuracy: 0.9016
125/126 [============================>.] - ETA: 0s - loss: 0.3012 - accuracy: 0.8992
126/126 [==============================] - 0s 2ms/step - loss: 0.3008 - accuracy: 0.8993

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 2ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 1ms/step

CV Folds: 100%|##########| 3/3 [00:32<00:00, 10.41s/it]
CV Folds: 100%|##########| 3/3 [00:32<00:00, 10.69s/it]

We can now look at the results per group:

cv_results["test_single_accuracy"]
[[0.85, 0.8666666666666667, 0.9333333333333333, 0.8, 0.85, 0.85, 0.85, 0.8833333333333333, 0.85, 0.85, 0.8166666666666667, 0.8666666666666667, 0.9333333333333333, 0.8, 0.8833333333333333, 0.8, 0.8, 0.8833333333333333, 0.7833333333333333, 0.8166666666666667, 0.8, 0.85, 0.8, 0.95, 0.8, 0.8833333333333333, 0.8833333333333333, 0.85, 0.85, 0.7833333333333333, 0.75, 0.8666666666666667, 0.8333333333333334, 0.9333333333333333], [0.7833333333333333, 0.8166666666666667, 0.7666666666666667, 0.7833333333333333, 0.85, 0.8, 0.8, 0.8166666666666667, 0.8, 0.8333333333333334, 0.8333333333333334, 0.8, 0.8166666666666667, 0.85, 0.75, 0.7, 0.8333333333333334, 0.8166666666666667, 0.8666666666666667, 0.7666666666666667, 0.7833333333333333, 0.7833333333333333, 0.7666666666666667, 0.8833333333333333, 0.8333333333333334, 0.7833333333333333, 0.8, 0.85, 0.85, 0.8166666666666667, 0.7666666666666667, 0.8, 0.8833333333333333], [0.7666666666666667, 0.9166666666666666, 0.8, 0.8, 0.7833333333333333, 0.85, 0.8833333333333333, 0.85, 0.9, 0.8833333333333333, 0.9, 0.85, 0.8833333333333333, 0.8166666666666667, 0.8333333333333334, 0.8333333333333334, 0.85, 0.7833333333333333, 0.7166666666666667, 0.7333333333333333, 0.75, 0.7833333333333333, 0.85, 0.7666666666666667, 0.7833333333333333, 0.9, 0.8666666666666667, 0.8333333333333334, 0.8333333333333334, 0.8166666666666667, 0.85, 0.85, 0.9]]

And the overall accuracy as the average over all samples of all groups within a fold:

cv_results["test_per_sample__accuracy"]
array([0.84705882, 0.80858586, 0.83080808])

Total running time of the script: ( 0 minutes 36.573 seconds)

Estimated memory usage: 253 MB

Gallery generated by Sphinx-Gallery